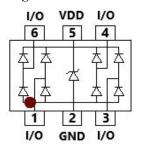


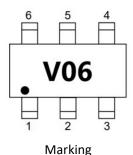
SSCE5V041SB

Ultra Low Capacitance Array for ESD Protection

Description


The SSCE5V041SB is a high performance and low cost design which includes surge rated diode arrays to protect high speed data interfaces. The SSCE5V041SB family has been specifically designed to protected sensitive components. Which are connected to data and transmission lines, from over-voltage caused by Electrostatic Discharging(ESD). Electrical Fast Transients(EFT), and lightning.

The SSCE5V041SB is a unique design which includes surge rated, low capacitance steering diodes and a unique design of clamping cell which is an equivalent TVS diodes in a single package. During transient conditions, the steering diodes direct the transient to either the power supply line or to the ground line. The internal unique design of clamping cell prevents over-voltage on the power line, protecting any downstream components. The SSCE5V041SB may be used to meet the ESD immunity requirements of IEC 61000-4-2, level $4(\pm 15 \text{KV} \text{ air}, \pm 10 \text{KV} \text{ contact discharge})$.


Feature

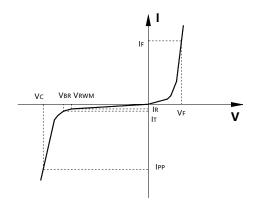
- ♦ SOT23-6L Package
- ♦ Provide ESD Protection for each channel to IEC 61000-4-2 (ESD) ±15KV(air), ±10KV(contact) IEC 61000-4-5(Lightning) (8/20us) 5A
- ♦ For low operating voltage applications:5V
- ♦ Low capacitance: 0.6pF typical
- ♦ Fast turn-on and low clamping voltage
- Array of surge rated diodes with internal equivalent TVS diode
- Solid-state silicon-avalanche and active circuit triggering technology

PIN configuration

Top view

Applications

- ♦ Video Graphics Cards
- ♦ USB2.0 Power and Data lines protection
- ♦ Notebook and PC Computers
- ♦ Monitors and Flat Panel Displays
- ♦ IEEE 1394 Firewire Ports
- ♦ SIM Ports


Mechanical data

- ♦ Lead finish:100% matte Sn(Tin)
- ♦ Mounting position: Any
- ♦ Qualified max reflow temperature:260°C
- ♦ Device meets MSL 1 requirements
- \Rightarrow Pure tin plating: $7 \sim 17$ um
- ♦ Pin flatness:≤3mil

• Electronic Parameter

Symbol	Parameter	
V_{RWM}	Peak Reverse Working Voltage	
I_R	Reverse Leakage Current @ V _{RWM}	
V _{BR}	Breakdown Voltage @ I _T	
I _T	Test Current	
I_{PP}	Maximum Reverse Peak Pulse Current	
V _C	Clamping Voltage @ IPP	
P _{PP}	Peak Pulse Power	
С	Junction Capacitance	

• Absolute maximum rating @TA=25°C

Symbol	Parameter	Value	Units	
P _{PP}	Peak Pulse Power (8/20µs)	100	W	
I _{PP}	Peak Pulse Current (8/20µs)	5	A	
37	ESD per IEC 61000-4-2 (air)	15	VV.	
V_{ESD}	ESD per IEC 61000-4-2 (contact)	10	KV	
T _{SOL}	Lead Soldering Temperature	260 (10 sec.)	°C	
T _{OP}	Operating Temperature	-55 to +125	°C	
T _{STO}	Storage Temperature	-55 to +150	°C	

• Electrical Characteristics @TA=25°C

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Reverse Working Voltage	V _{RWM}	Any I/O to Ground			5.0	V
Reverse Leakage Current	I_R	V _{RWM} =5V, Any I/O to Ground			1.0	uA
Reverse Breakdown Voltage	V_{BR}	I _T =1mA, Any I/O to Ground	6.0			V
Forward Voltage	$V_{\rm F}$	I _F =15mA		0.85	1.1	V
Classica V-14	Vc1	IPP=1A, tP=8/20us, Any I/O to Ground		8.5	12	V
Clamping Voltage	Vc2	IPP=5A, tP=8/20us, Any I/O to Ground		12	16	V
I di C id	Cı	$V_R = 0V$, $f = 1MHz$, between I/O pins		0.3	0.5	pF
Junction Capacitance		VR = 0V, f = 1MHz, Any I/O pin to Ground		0.6	0.9	pF

• Typical Performance Characteristics

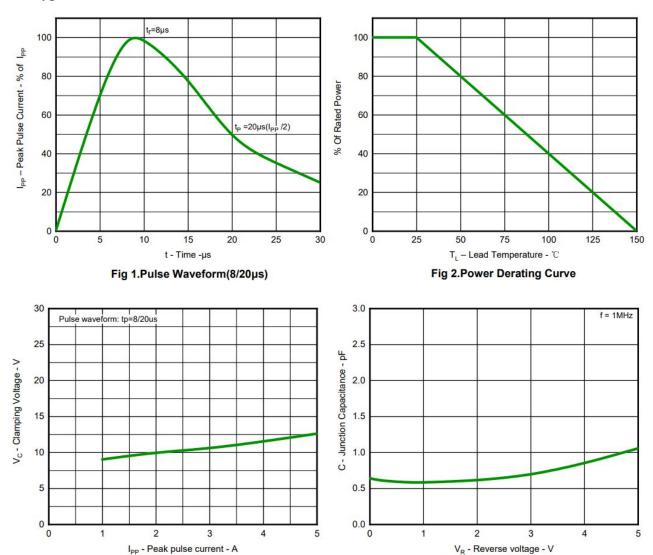
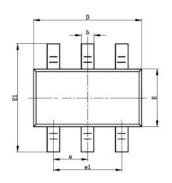
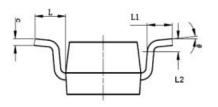


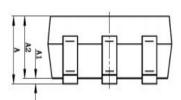
Fig 3. Clamping voltage vs. Peak pulse current

Fig 4. Capacitance vs. Reveres voltage

Package Information

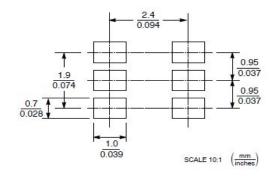

Ordering Information


Device	Package	Qty per Reel	Reel Size
SSCE5V041SB	SOT23-6L	3000	7 Inch


Mechanical Data

Case: SOT23-6L

■ Case Material: Molded Plastic. UL Flammability



DVI 4	Millimeters		
DIM	Min	Max	
A	0.000	1.450	
A1	0.000	0.150	
A2	0.900	1.300	
b	0.300	0.500	
с	0.080	0.210	
D	2.720	3.120	
E	1.400	1.800	
E1	2.600	2.300	
e	0.950BSC	0.037BSC	
e1	1.9BSC	0.075BSC	
L1	0.300 0.600		
L	0.7REF		
L2	0.25BSC		
θ	0	8	

Recommended Pad outline

DISCLAIMER

AFSEMI RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. AFSEMI DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICIENCE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

THE GRAPHS PROVIDED IN THIS DOCUMENT ARE STATISTICAL SUMMARIES BASED ON A LIMITED NUMBER OF SAMPLES AND ARE PROVIDED FOR INFORMATIONAL PURPOSE ONLY. THE PERFORMANCE CHARACTERISTICS LISTED IN THEM ARE NOT TESTED OR GUARANTEED. IN SOME GRAPHS, THE DATA PRESENTED MAY BE OUTSIDE THE SPECIFIED OPERATING RANGE (E.G., OUTSIDE SPECIFIED POWER SUPPLY RANGE) AND THEREFORE OUTSIDE THE WARRANTED RANGE.